考虑周期性的深度学习臭氧预测模型研究
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

X515

基金项目:

国家自然科学基金项目(42201359);广东省自然科学基金面上项目(2022A1515010492);中山大学大学生创新训练计划项目(20212045)


Reach on a Deep Learning Approach Considering Periodicity for Ozone Prediction Models: A Case Study of the Pearl River Delta
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    构建了一种长短时记忆神经网络(LSTM)和全连接神经网络(FC)结合的臭氧(O3)预测模型(LSTM-FC),并考虑O3质量浓度的周期性变化规律,以珠三角为例,实现了对其进行高精度预测的目标。结果表明:(1)考虑周期性的LSTM-FC模型24 h预测结果的均方根误差(RMSE)为16.08 μg/m3,决定系数(R2)可达0.82,相比未考虑周期性的模型,精度提升了32.28%。(2)考虑周期性的LSTM-FC模型对O3质量浓度低值部分能够取得更精确的预测结果,对高值部分低估的现象改善效果显著。考虑周期性后,大于《环境空气质量标准》(GB 3095—2012)中O31 h平均质量浓度一、二级限值的预测结果均得到了一定改善,RMSE分别下降了18.71%和34.90%,R2分别提升了40.42%和134.04%。研究结果表明,考虑周期性的LSTM-FC模型在O3预测方面具有良好的拓展性和应用潜力。

    Abstract:

    In this paper, an ozone prediction model which combines the Long Short Time Memory (LSTM) neural network and the Full Connection (FC) neural network (denoted as LSTMFC) is constructed, and the periodic variation rule of ozone concentration data is introduced to realize the highprecision prediction of ozone concentration. Taking the Pearl River Delta as an example, the results show that: (1) the root mean square error (RMSE) of 24hour prediction results of LSTMFC model that considers periodicity is 16.08μg/m3, the coefficient of determination (R2) can reach 0.82, which improves the accuracy by 32.28% compared with the model without considering periodicity. (2) Considering the periodicity, the LSTMFC model can achieve more accurate prediction results for the lowvalue part. At the same time, it can significantly improve the phenomenon of highvalue underestimation. The RMSE of prediction results that greater than the national primary and secondary ambient air quality standards decreased by 18.71% and 34.90% respectively, and R2 increased by 40.42% and 134.04% respectively. The above results show that the proposed LSTMFC model possesses good expansibility and application potential in ozone prediction.

    参考文献
    相似文献
    引证文献
引用本文

陈戴荣,崔玉祥,苏悦侬,吴金橄,李同文.考虑周期性的深度学习臭氧预测模型研究[J].环境监控与预警,2023,15(3):21-28

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-16
  • 最后修改日期:2022-11-12
  • 录用日期:
  • 在线发布日期: 2023-05-30
  • 出版日期: 2023-05-30
文章二维码
版权所有:环境监控与预警

主办:江苏省环境监测中心 通信地址:南京市建邺区中和路100号 邮政编码:210019

联系电话:025-69586548 电子邮箱:hjjkyyj@163.com

技术支持:北京勤云科技发展有限公司