Research Development of Non-targeted Screening Techniques for Pollutants in Environmental Media

LIANG Meng-yuan, FAN De-ling, GU Wen, LIU Ji-ning*, SHI Li-li
(Nanjing Institute of Environmental Sciences of Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China)

Abstract: With the improvement of mass accuracy in mass spectrometry and the expansion of the material database, the high-throughput non-targeted screening techniques developed rapidly, which provides an effective means for the analysis and identification of pollutants in complex environmental media. This paper summarizes the advances of non-targeted screening techniques [gas chromatography-high resolution mass spectrometry (GC-HRMS) and liquid chromatography-high resolution mass spectrometry (LC-HRMS)] in environmental sample analytical methods, including sample pretreatment methods, non-targeted analysis platforms, data analysis and current challenges. The applications of non-targeted screening techniques for analyzing water, sediment and soil samples are reviewed as well, and the existing problems and application prospect are promoted.

Key words: Environmental media; Non-targeted screening techniques; High-resolution mass spectrometry; Database

随着环境研究的深入,对于不断出现的新型化学污染物,以及缺乏标准品的物质,传统目标物定
性与定量方法已无法满足要求。近年来,质谱分析技术发展迅速,可用于高通量筛选、未知物鉴别的
非靶向技术应运而生。2015年欧盟资助建立的诺尔曼网 (www.norman-network.net) 已将非靶向分
析列为优先开发的方法[1],以快速识别不同基质中的未知物[2]。从广义上讲,非靶向筛查是指利
用代谢组学的技术筛选样本中的多种未知物,并结合统计学方法探寻样本中物质成分的差异
性[3-4]。狭义的非靶向筛查包括可疑物筛查和非目标物筛查。可疑物筛查是指根据感兴趣的化合
物类型,利用文献、自建或商业的化学数据库来匹配识别样本中的化合物,识别化合物的多少取决于
构建数据库的大小[5]。非目标物筛查是针对未建立相关数据库的新型污染物,需要根据采集后的
谱图信息,利用数据工具和辅助分析技术,或通
过人工来进行推断。随着高分辨质谱技术的
不断发展,通过非靶向筛查识别的物质准确度越来
越高。通常,环境样品基质复杂,富含化学物质
多样，非靶向筛查技术正逐渐成为环境介质中未知物识别的有力分析工具。现对非靶向筛查技术在环境污染物识别中的应用及局限性进行综述，以进一步拓展非靶向筛查在土壤等复杂环境介质中的应用。

1 非靶向筛查技术

非靶向筛查技术在环境污染物分析中是一项热门技术。其通过气相-液相联合高分辨质谱仪、核磁共振等分析仪器对样品进行检测，通过辅助分析技术对数据进行解析，利用图谱数据库或碎片预测等来获得化合物信息。非靶向筛查技术具有高通量的优势，拓展了传统靶向分析的广度。已广泛应用于生物医药、食品安全等领域。目前，用于非靶向筛查的分析技术主要为气相色谱-高分辨质谱法（GC-HRMS）和液相色谱-高分辨质谱法（LC-HRMS）[1,10-11]。针对不同的分析样品和目标物，不同分析方法有其各自的优点和一定的局限性。

1.1 气相色谱-高分辨质谱法

GC-HRMS 是非靶向筛查中最常用技术之一，具有检测速度快、分析灵敏度高、分离效能高、重复性好等特点，但其样品必须能够气化，对小分子化合物、挥发性物质、半挥发性等热稳定性物质具有较好的分析效果；而对于强极性、非挥发性物质需要经过衍生化为相应的挥发性衍生物后进行气相色谱-质谱分析[10]。非靶向筛查研究常用的仪器为气相色谱-飞行时间质谱仪（GC-TOF-MS）和全二维气相色谱-质谱仪（GC×GC-MS）。

飞行时间质谱（TOF-MS）是利用动能相同而质量比不同的离子在恒定电场中运动，通过恒定距离所需时间的不同来对化合物结构进行分析的质谱方法[12]。近年来，TOF-MS 的分辨率达 55 000（半峰全宽，FWHM）[13]，具有高通量、高灵敏度和选择性强的特点，对于复杂基质中有机物的检测有很大优势[14]。GC-TOF-MS 可在 Scan 模式下对样品进行全扫描，可一次筛查上百种化合物。Allan 等[15]利用 GC-TOF-MS 技术针对水样中的有机磷和联氨类化合物进行检测，初步筛查得到 14 种有机磷化合物和 2 种联氨类化合物，其中 3-甲基苯甲酸二苯酯（DPhGr），2-异丙基苯基磷酸二苯酯（PPhDPhP）和磷酸苯基（二叔丁基苯基）酯（DBPP）在挪威境内均为第一次报道。Lee 等[16]利用 GC-TOF-MS 平台构建了一个包含 215 种持久性污染物的数据库库，包含化合物的特征离子及碎片，同位素比例和保留时间，并利用该平台对北极地区环境样品海水、空气、土壤、沉积物、冰山和冰川进行检测，获取数据库库在北极地区共发现 113,103,102,101,55 和 97 种污染物，主要污染物类型有有机氯、多氯联苯、多环芳烃、有机磷阻燃剂、苯并二甲酰胺和合成麝香类化合物。GC-TOF-MS 近年来在环境介质非靶向筛查中广泛应用，主要用于具有极性和中等极性化合物的分析，如多环芳烃、卤代化合物、有机磷化合物和农药类物质。

二维气相色谱-质谱也是非靶向筛查中有力的工具，其将分离机理不同却又相互独立的 2 根色谱柱串联，样品经第 1 根色谱柱分离后，通过调节仪器脉冲洗的方法进入第 2 根色谱柱进行进一步分离，利用极性和温度的不同实现气相色谱分离特性间的正交化[17]。全二维色谱具有更大的峰值容量和分离能力[1,18-19]。结合质谱高分辨率、高灵敏度的特点，对一维色谱无法分离的物质有更强的优势。Mohler 等[20]利用全二维气相色谱-飞行时间质谱（GC×GC-TOF-MS）分析了采自 5 个点位的 22 个地下水样品，初步鉴定出 760 多种极性物质，包括酸、酯、醇、酚、酮、醛。Skoczýnska 等[21]对易北河（捷克）沉积物进行提取净化后，采用 GC×GC-TOF-MS 极性分析，从 3 个馏分中初步筛查得到 400 多种化合物，包括有潜在毒性化学品等，烃类如多环芳烃、烷烃、多环芳烃类、有机物如芳香烃等。GC×GC 在两个维度上提供了物质的信息，TOF-MS 具有较高的捕获效率，两者耦联可提供被测物质的特定信息，尤其适用于类重金属、环境污染物库等分析。尽管对于复杂基质的非靶向筛查，全二维气相色谱-质谱有明显的优势，但会产生结构复杂的数据集[22]。为解决背景干扰，提高数据的准确度，LECO 公司针对 GC×GC-TOF-MS 开发了高分辨解卷积技术，Agilent 公司开发了实时背景离子质量校正技术，可以提高未知化合物的检测准确度。目前解卷积软件已针对本公司仪器平台，不能通用。

1.2 液相色谱-高分辨质谱法

LC-HRMS 将高效、快速分离的液相色谱（LC）与高灵敏度、高准确度的质谱（MS 或 MS2）联用，对于难挥发或热不稳定性化合物有较好的分析
效果，是当前应用最广泛的非靶向筛查技术之一\cite{25-24}。目前，液体相色谱联合用于非靶向研究的质谱，主要是 TOF-MS 和轨道离子阱质谱（Orbitrap-MS）。

TOF-MS 全扫描模式具有高分辨率和精确度，在未知化合物分子鉴定方面的选择性和专一性都很高，但目前主要用于化合物物的定性分析，筛选到的化合物需要结合其他分析平台进一步定量分析\cite{1}。Vergeynst 等\cite{25} 利用大面积扫描 - 超高效液相色谱 - 四极杆飞行时间质谱 (ULPC - TOF - MS) 分析方法，对比利时入水样品中的药物进行筛查，发现 37 种可疑药物，其中 30 种与标准品比对到后证明，包括镇痛药、抗生素、抗抑郁药、抗癫痫、抗抑郁和抗炎药等。Martinez 等\cite{26} 采用超高效液相色谱 - 四极杆串联飞行时间质谱 (UPLC - TOF - MS) 与超高效液相色谱 - 三重四极杆串联质谱法 (UPLC - QQQ - MS) 对河水中残留药物进行筛查，确认了酮洛酸、曲唑酮、氟康唑、二甲双胍、丙酸类等药物成分，质量浓度为 14 - 677 ng/L。Hernández 等\cite{27} 利用液相色谱 - 飞行时间质谱 (LC - TOF - MS) 分析农药及代谢物，包括 377 种杀虫剂，40 种代谢物，47 种抗生素，20 种其他产品及 7 种新型环境污染物，为食品和水中药物及其代谢物的筛查提供参考。Yu 等\cite{28} 和 Wang 等\cite{29} 通过 LC - TOF - MS 的非靶向筛查技术总结环境中氯苯多氯联苯化合物的碎片特征及裂解行为，构建了其筛查策略，并在空气颗粒物和废水中得到验证。研究显示，LC-TOF-MS 与 LC-QQQ-MS 等定量分析方法将和是环境样品中未知污染物定量分析的有效方法。

液相色谱 - 轨道离子阱质谱（LC - Orbitrap-MS）不仅具有高分辨率、高灵敏度和高质量精度，还能对化合物进行多级质谱分析，对于样品中痕量物质及新型污染物分析具有显著优势。通常，Orbitrap-MS 分辨率可达 100 000，对于分离 2 个质量差只有 0.01 u 的峰是必要的。对于基质背景复杂的样品， Orbitrap-MS 仪的高分辨率扩展了其更广阔的扫描范围，尤其适用于分析含有痕量物质的样品。当有标准品时，可通过化合物的精确质量数和保留时间对未知化合物进行定性和定量\cite{30}。Naree 等\cite{31} 利用 LC - HRMS 构建了一个非靶向筛查策略，通过对韩国境内污染江河水样的药物和个人护理品 (PPCPs) 类污染物进行筛查，最终匹配得到 51 种 PPCPs，其中 28 种化合物经与标准物质匹配得到验证，卡马西平、二甲双胍、对苯二胺、草酸、和氟康唑检出率为 100%。卡马西平，二甲双胍，对苯二胺、咖啡因、西米替丁的最高质量浓度 > 1 000 ng/L。Meng 等\cite{32} 利用 LC - Orbitrap-MS 技术对珠江河口表水中的药物和个人护理品进行筛查，通过数据库匹配得到 95 种化合物，主要分为 4 大类：农药、药物、塑料制品和表面活性剂，对其主峰一致，风险较大的 19 种物质进一步确认及量化，方法检出限为 0.015 ～ 1.00 ng/L，定量限为 0.05 ～ 6.50 ng/L。基于 LC - Orbitrap-MS 平台构建的非靶向分析策略在环境水样中污染物的筛选应用较广泛，对于其他环境样品的检测分析具有一定的借鉴意义。

1.3 数据处理

利用 GC - MS, LC - MS 对样品进行检测后会生成大量数据，如何将这些数据转换为可视化数据，并进行系统分析是非靶向筛查的难点。对于 GC - MS, LC - MS 图谱的解析，包括两个方面：数据获取和数据推断。首先，需要对质谱图数据的分析识别、分子、碎片提取，排除背景中的信号峰，然后，根据谱图提供的精确质量数可以匹配得到分子。MS - MS 图谱提供了碎片离子信息，裂解规律、同位素比例等信息，与相关数据库进行比较来匹配到特征化合物，或人工总结化合物的特征碎片和裂解规律，通过 R 元 (R Development Core Team) 等软件构建匹配的算法，以筛查识别污染物。Kang 等\cite{33} 利用 MConvert (ProteoWizard) 软件对质谱图数据进行提取转换，将得到的数据通过 R 元构建解析算法来实现多氯苯类物质（PFAS）的筛查识别。在数据获取方面，通过解卷积软件进行信号噪音消除，同位素及加合物的构建，但对于基质复杂、污染物结构多样的环境样品，数据解析算法的研究与开发仍是一项很大的挑战。对于同分异构体类化合物，其特征碎片和裂解行为通常一致，可通过分析化合物在色谱分离中的相对出峰顺序来进一步区分\cite{34}。随着质谱数据库和化学数据库的不断扩大，商业版质谱数据处理软件的性能正在提高，MZmine 和 XCMS 软件是最常用的两位。仪器生产商也开发了相匹配的软件，如 Agilent 公司的 MassHunter Profinder 软件、Thermo 公司的 Compound discoverer 软件、AB SCIEX 公司的 PeakView 1.2 软件，实现了数据的批处理，从原始
数据提取、数据库的获取，到谱库匹配进行化合物鉴定，同时还可以进行统计分析。此外，相关类型的软件还有 Kendrick mass defect software、AMDIS软件（Automated mass spectrum deconvolution and identification system，NIST）等。但这类软件都只针对特定的分析平台，相互之间无法识别。

2 非靶向筛查技术在环境分析中的应用

2.1 环境水样污染物非靶向筛查
非靶向筛查前提是要求从复杂基质中获得尽可能多的化学物质的信息，广泛应用于地表水\(^{33}\)、地下水\(^{34}\)、废水\(^{35}\)等的研究，主要针对农药、药物、个人护理品等有机污染物\(^{36-38}\)。样品经过提取、富集、净化等后，其中的化学物质转化为便于分析测试的格式\(^{39}\)。水样前处理方法主要为固相萃取（SPE）\(^{40-42}\)，经过滤去除悬浮颗粒杂质，使用甲醇或氨水调节样品至酸性（pH 值 = 3）或中性后进行富集萃取。萃取剂通常为 HLB 吸附剂，即由 n-乙烯基吡咯烷酮和乙烯基苯两种单体结合而成的一种聚合物，以达到亲水亲油平衡，对样品中极性和酸性跨度大物质有良好的吸附能力。Casado 等\(^{43}\)利用 HLB 固相萃取前处理联合 LC – HRMS 对地表水中农药类污染物进行非靶向筛查，鉴别出 252 种农药类污染物，其中 204 种物质的检测限可达 5 ng/L。为了缩短样品的前处理时间和筛查尽可能多的物质，可使用多种固相萃取小柱串联的方式对水样中的化合物进行富集，同时可以降低检测限\(^{44-47}\)。Gago – Ferrero 等\(^{48}\)运用 LC – QTOF – MS 技术构建一个包含 284 种药物及其代谢物的数据库，利用 4 种固相萃取小柱（200 mg Strata X，150 mg Isolute ENVI +，100 mg Strata – X – AW，100 mg Strata – X – CV）串联方式处理废水样品，用含 2% 氨水的甲醇：乙酸乙酯（V:V = 1:1）溶液洗脱和含 1.7% 甲酸的甲醇：乙酸乙酯（V:V = 1:1）溶液脱水，通过对比，最终筛查出 82 种物质。随着谱库分析灵敏度的不断提高，样品中 10⁻¹⁵ g 水平的物质也能被检测到。对于此类液相色谱 – 质谱联用仪，水样分析可以选择直接进样法，既避免了样品在前处理过程中的损失，也节省了吸附材料的使用\(^{24}\)。Pérez – Parada 等\(^{49}\)以河水样品中筛选得到的 10 种药物为目标，比较了直接进样和 SPE 法 2 种方式对分析结果的影响，发现 SPE 法检出限较低，但基质效应高；而对于会发

生离子抑制或增强的化合物，直接进样法结果更为准确。随着质谱分析的分辨率不断提高，将环境水样中痕量化合物及新型污染物分析而言，直接进样法可能会有更广泛的应用而成为未来的发展趋势。

2.2 污染物样品中污染物非靶向筛查
水体中的污染物在转移过程中会富集到沉积物中，在水体与沉积物之间形成动态平衡。然而水溶性物质会在沉积物中大量累积，在转移中又会少量地释放入水体，进一步污染水源。因此，对沉积物中污染物的筛查也非常重要。沉积物样品的前处理与土壤样品的处理一致。Grigoriadou 等\(^{50}\)分析卡瓦拉地区（希腊东北部）沿海地区沉积物中的有机污染物时，采取硅胶柱对提取液进行净化，利用丙烷、二氯甲烷和甲醇分别洗脱，分 6 个馏分进行收集，经 GC – MS 分析发现，污染物主要包括 6 大类：卤代化合物、含氮化合物、含硫化合物、增塑剂、多环芳烃类及含氧化合物。Bu 等\(^{51}\)在传统净化方法上进行优化，将海河沉积物样品与二氯甲烷：丙酮（V:V = 1:1）为提取剂，加速溶剂萃取法进行提取，提取液采用凝胶渗透色谱（GPC）和含弗罗里硅土的固相萃取柱（SPE）进行净化，采用 GC – MS 分析筛查出 847 种有机污染物，主要为农药、阻燃剂、药物及个人护理品。目前对于沉积物中污染物的研究主要集中于农药、药物、卤化物和多环芳烃等。沉积物通常基质成分复杂，对于化合物筛查影响较大，目前尚未有较好的前处理方法来进行改进。今后，开发降低基质效应、提高检测限的前处理方法，以及完善数据处理软件是重点发展方向。

2.3 土壤样品中污染物非靶向筛查
对于土壤和沉积物等固体样品，与传统前处理方法相比，在提取液的净化方面有所不同。Tong 等\(^{52}\)利用微波萃取技术提取沉积物中的抗生素类物质，结合 HLB 固相萃取对提取液净化后，利用 UPLC – Q – Orbitrap – MS 对 25 种抗生素进行分析，检测限可达 0.1 ~ 3.8 μg/kg。QuEChERS 法是一种快速、简单、安全的提取方法，近年来主要用于农药残留的相关研究\(^{53-55}\)。张璐等\(^{56}\)利用 QuEChERS 法处理土壤样品，经 LC – Orbitrap – MS 仪全扫描模式对土壤中残留氟苯甲酸酯类农药进行分析，定性筛查得到 23 种该类农药，平均回收率为 62.5% ~ 112.9%，定量限为 5 μg/kg。QuEChERS 法广泛应用于食品中残留农药的分析，
在土壤、沉积物等环境基质中使用较少。随着吸附剂的不断开发，未来 QuEChERS 法在环境样品前处理中将有很大的应用空间。

目前，土壤非靶向筛查研究多用于农业土壤中农药残留问题，而关于场地土壤中污染物的研究鲜有报道。Guo 等[38]构建了一种分层虚拟筛选的方法，在一级虚拟分馏中建立多元分析方法，在二级虚拟结构解析中，开发内部定量结构-保留关系（QSRR）模型和毒性模拟方法。利用该策略对化学园区中 18 个土壤样品进行分析，检测到 8 个具有抗性激活性的化合物。这种从毒性效应出发，利用虚拟分层筛选的策略对土壤中潜在有害污染物进行筛查的方法，能更快速地识别关键污染物，具有良好的应用前景。

3 非靶向筛查技术存在的问题和应用前景

非靶向筛查技术在环境检测中的应用已引起广泛关注，但该方法仍处于发展阶段，存在很多不足，有待进一步完善。在样品前处理过程中，环境水样基质相对简单，固相萃取是最常用的方法。而对于固体类环境样品，基质比较复杂，样品中痕量物质的提取及图谱基质效应的去除存在很大挑战。随着纳米材料学的发展，碳基纳米材料、类石墨烯氧化碳、金属有机骨架、金属氧化物等修饰的功能化磁性纳米材料在环境样品污染物的分析中开始应用，对于各类复杂样品的前处理具有良好的潜力。GC- HRMS 和 UPLC- HRMS 具有高通量、高灵敏度、高分辨率和较低的检出限，能快速鉴别大量化合物，是目前非靶向筛查的主要分析平台。但非靶向筛查技术首先缺乏标准化的流程和评价指标，对分析结果无法进行系统评估；其次，对于样品中含量很低的化合物，其数据难以从大量数据中提取出来；此外，谱图数据库中包含的化合物谱图有限，不同分析仪器得到的质谱图存在一定差异，而数据处理软件对谱图数据的解析算法也不尽相同。

因此，在环境研究领域，非靶向筛查技术作为一项新型的分析技术，面临着巨大的挑战，同时也具有广阔的发展空间。

[参考文献]


