氯胺酮对水生生物的毒性效应及生态风险评估

罗堂1, 刘娜2, 金小锋3, 徐建1*
(1. 中国环境科学研究院环境健康风险评估与研究中心, 国家环境保护化学品生态效应与风险评估重点实验室, 北京 100012 ; 2. 环境基准与风险评估国家重点实验室, 北京 100012; 3. 中国环境监测总站, 北京 100012)

摘要: 通过检索国内外期刊发表的文献中关于我国河流、湖泊中氯胺酮(KET)的数据, 评估其在地表水中的暴露水平, 利用风险商(RQ)初步分析 KET 在我国部分地表水环境中的生态风险。结果表明, 我国地表水中 KET 的检出率为 20% ~ 100%, 最高检出值为 420 ng/L, 基于发育、繁殖和行为等慢性毒性数据推导出的预测无效应浓度(PNEC) 为 1.36 × 10^{-6} mg/L, 基于慢性毒性计算的风险商值为 0.03 ~ 36.76, 表明我国地表水中 KET 存在风险, 其中台湾淡水河、金梅河和广东珠江具有高风险, 而北方大部分河流潜在风险较低。

关键词: 氯胺酮; 毒性效应; 生态风险评估

The Aquatic Toxicity and Ecological Risk Assessment of Ketamine

LUO Ying1, LIU Na2, JIN Xiao-wei3, XU Jian1*
(1. Center for Environmental Health Risk Assessment and Research, Chinese Research Academy of Environmental Sciences, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Beijing 100012, China; 2. State Key Laboratory of Environmental Criteria and Risk Assessment, Beijing 100012, China; 3. China National Environmental Monitoring Centre, Beijing 100012, China)

Abstract: In this study, to assess the overall status of KET research in aquatic environments of China, data on exposure to KET, expressed as concentrations in surface waters including rivers and lakes were collected from literature published in China and abroad. Risk quotient (RQ) was calculated to assess ecological risk in Chinese surface waters. Results showed that, the detection frequency of KET in surface water ranged from 20% ~ 100%, and the greatest concentration was 420 ng/L. Predicted no effect concentration (PNEC) derived on the basis of chronic toxicity data, including endpoints of reproduction and development was 1.36 × 10^{-6} mg/L. RQ based on chronic toxicity data were ranged from 0.03 ~ 36.76, which suggested risk in some Chinese surface waters. The ecological risks of KET in Tamsui River and Jinmei River in Taiwan, and Pearl River in Guangdong were higher, while rivers in north China were lower.

Keywords: Ketamine; Toxic effect; Ecological risk assessment

精神活性物质是指对神经系统（包括中枢神经系统和其他神经系统）具有影响的一类新型污染物[1]。精神活性物质通过吸食或注射的方式进入人体, 由于不能被人体完全代谢, 通常以母体化合物或代谢物的形式经尿液和粪便排出人体, 由下水道进入污水处理设施[2]。目前, 我国污水处理工艺很难完全去除污水中的精神活性物质, 未去除的母体化合物及其代谢物被直接排入环境水体中[3], 对生态系统造成危害。据报道, 氯胺酮 (ketamine, KET) 是生产量环比重增长最快的一种精神活性物质[4], 其化学名称为 2 –(2 –氯苯基) – 2 – (甲氨基) 环己酮, 又名开他敏, 俗称“K 粉”, 是

目前，国内外针对 KET 在水环境中的浓度水平、迁移转化以及对水生生物毒性研究具有一定基础，但没有对其生态环境进行系统的归纳总结。现通过检索在国内外期刊发表的文献中关于我国河流、湖泊中 KET 的数据，评估其地表水中 KET 的暴露水平，可为 KET 的生态环境评估和环境管理提供科学依据和支撑。

1 研究方法
1.1 数据来源及处理

收集 KET 数据的河流涵盖我国 7 个主要河流水系中 4 个河流水系，分别是松花江、黄河、长江和珠江[19]。同一流域中不同检测点位，低于方法检出限（method detection limits, MDL）的数据按低于方法检出限的 50% 计算。使用 SPSS22（SPSS Inc., Chicago, Illinois）中 Kolmogorov – Smirnov 检验方法对我国地表水中 KET 的暴露分布数据进行正态分布检验。

通过检索数据库（如 ECOTOX 数据库，http://cfpub.epa.gov/ecotox/）和国内外期刊发表的文献[20-21]，获取 KET 对水生生物的慢性毒性数据，并根据相关性、可靠性和准确性原则对数据进行筛选[22]。

测试指标包括繁殖、发育、行为、生物化学与分子生物学等；测试终点以无观察效应浓度（no observed effect concentration, NOEC）为主，当 NOEC 数据不足时，使用最大可接受浓度（maximum acceptable toxicant concentration, MATC），最低可观察效应浓度（lowest observed effect concentration, LOEC）或 EC，替代[23]。当同一测试终点有多个毒性数据时，使用几何平均值[24]。

物种敏感分布曲线（species sensitivity distribution, SSD）利用不同物种对化合物的敏感度按照一定的累积概率分布，采用统计形式汇总分析多种非靶标物种的实验数据，以获取具有敏感度差异的物种毒性数据应用于化合物的风险评估[25]。选择不同水生生物的最敏感慢性毒性数据进行 Kolmogorov – Smirnov 检验，验证其是否符合对数正态分布模型。采用荷兰国家公共卫生与环境研究所（RIVM）开发的 ETX 2.0[26] 构建 SSD 曲线，并推导 5% 物种受到危害的浓度（hazardous concentration for 5% species affected, HC5）[27]。考虑到非本地物种、物种种类、野外实际暴露等影响因素，最终预测无效应浓度（PNEC）值为：

\[PNEC = HC5 / AF \]

（评估因子），根据有效毒性数据的量和质量，AF 取值为 2 - 5[28]，本研究中 AF 取 5[29]。

1.2 评估方法

常用的生态风险评估方法有风险商（risk quotient，RQ）和概率生态风险评估（probabilistic ecological risk assessment，PERA），分别用于表征污染物暴露对生态环境产生危害的严重程度和概率。现重点注意 KET 在我国不同水体的生态风险严重程度，选择风险商作为风险表征方法。风险商是污染物在水环境中的暴露浓度与毒性阈值的比值，比值越大风险越高；比值 < 0.1，表明风险可忽略；比值为 0.1 - 1，表明存在低风险；比值 > 1，表明存在高风险[30]。其中暴露浓度指实际检测的环境浓度（measured environmental concentration, MEC）或利用模型估计出的预测环境浓度（predicted environmental concentration, PEC）；毒性阈值一般用 PNEC、基准最大浓度（Criteria Maximum Concentration，CMC）和基准连续浓度（Criteria Continuous Concentration，CCC）表示。根据 AF 或 SSD 外推得到。

采用风险商法对我国地表水环境中 KET 进行生态风险评估，即：

\[RQ = MEC/PNEC \]

根据风险商的大小将 KET 在我国地表水中生态风险分为 4 个等级，当 RQ < 0.1 时，KET 对水生生物的风险可忽略；当 0.1 ≤ RQ < 1 时，KET 对水生生物的风险较低；当 1 ≤ RQ < 10 时，KET 对水生生物为中等风险；当 RQ ≥ 10 时，KET 对水生生物为高风险[31]。

— 133 —
2 结果与讨论
2.1 KET 的环境暴露

KET 是合成型精神活性物质，在合成、处理过程以及吸食代谢后均会产生含有母体化合物的废水，根据中国禁毒网发布的 2018 年中国毒品形势报告，近年，我国 KET 的生产量同比增长 35%[4]。KET 具有难挥发、难生物降解以及较弱生物活性等特点，大部分 KET 随生活污水进入污水处理厂，由于我国污水处理工艺对 KET 处理效率较低（49%）[6]，大量残留 KET 排入地表水中。

不同国家地表水中 KET 的污染水平见表 1。

<table>
<thead>
<tr>
<th>国家</th>
<th>地表水体</th>
<th>平均值/(ng·L⁻¹)</th>
<th>范围/(ng·L⁻¹)</th>
<th>采样数量/个</th>
<th>检出率/%</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>中国</td>
<td>松花江</td>
<td>0.04</td>
<td>ND-0.1</td>
<td>5</td>
<td>100</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>黄河</td>
<td>0.1</td>
<td>ND-0.4</td>
<td>5</td>
<td>40</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>长江</td>
<td>2.57</td>
<td>1.8-3.7</td>
<td>6</td>
<td>100</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>珠江</td>
<td>15.6</td>
<td>9.9-21.7</td>
<td>6</td>
<td>100</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>北京市 7 条河流</td>
<td>2.92</td>
<td>1.02-16.34</td>
<td>34</td>
<td>74</td>
<td>[7]</td>
</tr>
<tr>
<td></td>
<td>北运河</td>
<td>4.8</td>
<td>1.5-12.3</td>
<td>15</td>
<td>100</td>
<td>[8]</td>
</tr>
<tr>
<td></td>
<td>北方 36 条入海河流</td>
<td>0.34</td>
<td>0.04-4.5</td>
<td>36</td>
<td>69.44</td>
<td>[10]</td>
</tr>
<tr>
<td></td>
<td>台湾金桶河</td>
<td>30.42</td>
<td>0.4-420</td>
<td>20</td>
<td>85</td>
<td>[11]</td>
</tr>
<tr>
<td></td>
<td>台湾淡水河</td>
<td>50</td>
<td>ND-341</td>
<td>11</td>
<td>100</td>
<td>[12]</td>
</tr>
<tr>
<td></td>
<td>北方setItem()</td>
<td>1.04</td>
<td>ND-4.0</td>
<td>25</td>
<td>20</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>北方setItem()</td>
<td>1.5</td>
<td>ND-12.6</td>
<td>24</td>
<td>79.2</td>
<td>[9]</td>
</tr>
<tr>
<td></td>
<td>英国</td>
<td>纳污河</td>
<td>6.96</td>
<td>0.2-53.7</td>
<td>69</td>
<td>84.1</td>
</tr>
<tr>
<td></td>
<td>捷克共和国</td>
<td>纳污河</td>
<td>0.8</td>
<td>ND-1.4</td>
<td>21</td>
<td>47.6</td>
</tr>
<tr>
<td>西班牙</td>
<td>佩斯克利瓦自然公园</td>
<td>ND-414.92</td>
<td>23</td>
<td>69.5</td>
<td>[15]</td>
<td></td>
</tr>
</tbody>
</table>

ND:未检出。

根据目前我国地表水中 KET 的暴露情况，KET 分布具有明显的南北差异性，南方地表水环境中 KET 的暴露水平高于北方地表水中 KET 的暴露水平，与我国饮用水中 KET 的检测浓度和浓度分布相一致[1]，这与降雨、蒸发等气象因素以及是否具有污水处理设施等影响地表水中 KET 的因素相关，也与人口密度和经济状况密切相关。文献[7] 研究一年四季北京市 7 条河流中 KET 时空分布，发现春季 ρ（KET）（2.92 ng/L）和检出率（74%）最高，其次是秋季和冬季，其值和检出率分别为 1.22 和 0.82 ng/L，25.6% 和 14.7%；最后是夏季，检出率和均值为 0。

从世界范围内 KET 的分布来看，我国河流中 KET 的暴露水平比国外地表水[13-15] 中（47.6% ~ 84.1%）更普遍，因为甲基苯丙胺和 KET 等是我国主要使用的精神活性物质，而国外 KET 的使用量较低，通常为摇头丸等精神活性物质[15]。采用 Kolmogorov-Smirnov 检验分析我国地表水 KET 的暴露浓度数据，结果显示 KET 在我国地表水中的分布符合正态分布。KET 能够在水和沉积物之间迁移，采用水 - 沉积物分配系数表示化合物的迁移能力和分配效能[17]。研究表明，分配系数受到温度、压力等参数因素的影响，需要通过实验得到准确的分配系数[36]。根据中北运河地表水和沉积物中的 ρ(KET)、Hu 等[8] 计算出 KET 分配系数为 378.1 L/kg，低于苯丙胺（1214 L/kg）[19] 和可卡因（2000 L/kg）[19] 的分配系数，但高于苯甲酰甲酸酯（200 L/kg）[37] 和甲基苯丙胺（149.3 L/kg）[18] 的分配系数。此外，环境中的 KET 具有光降解行为[36]，但自然环境中 KET 生物光降解效率较差。Chen 等[38] 以银负载磷杂环多聚氢化单质材料（Ag/P-g-C3N4）作催化剂，利用可见光降解地表水中的 KET，降解效率高于污水处理工艺中 KET 的降解效率，而甲 KET 和甲苯二氢 KET 是常见的降解产物；Gu 等[39] 采用紫外光与双氧水结合降解不同水体中（超纯水、自来水、地表水及污水处理厂的二级出水）的 KET，发现超纯水中 KET 的降解速率最快，地表水中 KET 的降解速率最慢，由于地表水中水质组成比较复杂，pH 值、HCO3⁻ 和有机质等多种因素影响降解速率[38-39]。
2.2 KET对水生生物的毒性效应

2.2.1 KET对水生生物的毒性

KET作用机制复杂，能够从分子、组织器官及个体等不同水平影响水生生物，如器官畸形、改变行为活动和繁殖等。

（1）神经毒性。氯胺酮是苯环己哌啶（phencyclidine, PCP）的衍生物,N－甲基－D－天门冬氨酸(N－methyl－D－aspartate, NMDA)受体拮抗剂，长期滥用会产生改变行为和影响社会互动能力等神经毒性[18]。Riehl 等[18]以成年斑马鱼为研究对象，暴露于亚麻醉剂（2, 20 和 40 mg/L）KET溶液20 min后，结果表明KET能够影响斑马鱼的行为，同时能够削弱社会性、减轻斑马鱼的焦虑感、破坏群聚行为及降低皮质醇水平；pKET为20 mg/L时，斑马鱼的行为发生显著变化。Riehl 等[18]研究发现KET对斑马鱼的行为具有抑制和兴奋2种效应，在低浓度水平下，KET增强或抑制神经元内细胞凋亡的能力，影响与基底神经节受体结合，进而抑制成年斑马鱼的运动行为；pKET为20 mg/L持续暴露后，基本结构亚基NRIA基因表达显著增加，机体通过代谢性上调NMDA受体，过度激活NMDA受体通道导致斑马鱼产生兴奋效应；当斑马鱼对外界刺激反应能力和社会交互能力降低时，bel-2和c-fos神经发育基因表达量下降，表明bel-2和c-fos基因表达减少与神经行为发育障碍具有一定的相关性。

Wang等[19]研究发现，pKET为5×10^{-4} mg/L时，对秀丽隐杆线虫的行为具有显著影响，主要表现为摄食率、运动、嗅觉及味觉等方面。苯乙醇胺（octopamine, OA）、多巴胺（dopamine, DA）和五羟色胺（serotonin，5－HT）是调节脊椎动物摄食率、运动、产卵和趋化性的关键神经激素；KET通过增加OA, DA水平来加快秀丽隐杆线虫摄食率和运动行为，其中无脊椎动物中的OA与脊椎动物中去甲肾上腺素具有相同的作用。5－HT是无脊椎动物中重要的负反馈调节神经激素，当降低5－HT的水平时，线虫的嗅觉和味觉敏感度的敏感性。

（2）发育毒性。Félix等[20]研究斑马鱼胚胎（囊胚期）暴露于不同pKET（200, 400, 800 mg/L）溶液中的发育情况，结果显示，800 mg/L时致畸最为显著。目前，了解最清楚的KET毒性机制是通过改变Ca^{2+}在NMDA受体通道的通透性而导致神经病理性损伤[21]，但囊胚期的毒性机制不同。研究表明，在NMDA受体之前，KET通过抑制HePG2细胞中肌动蛋白表达诱发斑马鱼胚胎的致畸效应。Liao等[22]发现KET能够通过改变超氧化物歧化酶（superoxide dismutase, SOD）,过氧化氢酶（catalase, CAT）和谷胱甘肽S－转移酶（glutathione S－transferase, GST）活性来影响心脏发育，例如心脏水肿，心功能下降等。此外，心脏发育阶段，KET通过降低MLC2 mRNA和蛋白表达水平非洲爪蟾诱发胚胎发育异常[23]，其中MLC2是心肌发育的重要基因。

（3）其他毒性。Li等[24]研究KET对大鼠致死和繁殖的影响，结果表明KET对大鼠的48 h半数致死浓度（48 h LC_{50}）为30. 93 mg/L;减少33.6%～49.8%子代存活的数量（0.005～0.1 mg/L）。罗荣[25]研究不同pKET对大鼠发育和繁殖的影响，在长期暴露条件下，发育和繁殖的pKET（NOEC）分别为0.001和0.1 mg/L。此外，青鳍鱼幼鱼在KET溶液中暴露14 d后，幼鱼体内产生氧化应激反应，抗氧化酶的活性随KET活性（reactive oxygen species, ROS）的水平而变化；KET诱导氧化应激破坏雌性幼鱼体内乙酰胆碱酯和含半胱氨酸的天冬氨酸酯解烯醇的表达，提高丙二醛（malondialdehyde，MDA）的含量[26]，对青鳍鱼产生细胞毒性效应。

2.2.2 KET的PNEC推导

现基于生长、繁殖及行为等测试时，收集水生植物、无脊椎动物、鱼类及两栖动物的慢性毒性数据（表2）。KET对水生生物慢性毒性值为0.0005～125 mg/L，呈值为20.74 mg/L。比较同一物种的不同测试终点，发现水生生物的发育和繁殖指标对KET更加敏感。

张艳[27]和邓洋波[28]采用评估方法，利用ECOSAR预测水生生物的急性毒性数值以评估因子1 000，计算出KET的PNEC值（7.0×10^{-4} mg/L）。现选择斑马鱼、青鳍鱼和非洲爪蟾的慢性毒性效应的PNEC值为1.36×10^{-4} mg/L（表3）。本研究基于敏感测试终点毒性数据推导PNEC值。通过Kolmogorov-Smirnov检验分析，数据集符合对数正态分布（p > 0.05）。基于选取的慢性毒性数据采用log-normal模型构建SSD曲线，曲线拟合度（r^2）为0.968。由SSD曲线计算得到H_{0.6}（6.82×10^{-4} mg/L），以评估因子5推导出KET基于生长、繁殖等慢性毒性效应的PNEC值为1.36×10^{-4} mg/L（表3）。本研究基于敏感测试终点毒性数据推导PNEC值。
表 2 KET 对不同水生物在不同测试终点的毒性值

<table>
<thead>
<tr>
<th>受试生物</th>
<th>暴露时间/d</th>
<th>测试终点</th>
<th>毒性效应</th>
<th>效应浓度/(mg·L⁻¹)</th>
<th>参考文献</th>
</tr>
</thead>
<tbody>
<tr>
<td>斑马鱼</td>
<td>4</td>
<td>LOEC</td>
<td>胚胎致死</td>
<td>200</td>
<td>[18]</td>
</tr>
<tr>
<td>非洲爪蟾</td>
<td>EC₀</td>
<td></td>
<td></td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>非洲爪蟾</td>
<td>14</td>
<td>LOEC</td>
<td>125</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大螯虾</td>
<td>21</td>
<td>LOEC</td>
<td>发育</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>紫背浮萍</td>
<td>4</td>
<td>NOEC</td>
<td>生长</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>青鳉鱼</td>
<td>14</td>
<td>NOEC</td>
<td>繁殖</td>
<td>0.01</td>
<td>[22]</td>
</tr>
<tr>
<td>大螯虾</td>
<td>21</td>
<td>LOEC</td>
<td>繁殖</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>秀丽隐杆线虫</td>
<td>7</td>
<td>LOEC</td>
<td>行为</td>
<td>0.0005</td>
<td>[19]</td>
</tr>
<tr>
<td>斑马鱼</td>
<td></td>
<td>LOEC</td>
<td>行为</td>
<td>20</td>
<td>[18]</td>
</tr>
</tbody>
</table>

①EC₀为半数效应浓度。

表 3 基于慢性毒性测试终点构建 KET 的 SSD 曲线相关参数

<table>
<thead>
<tr>
<th>样本数</th>
<th>平均值</th>
<th>标准差</th>
<th>K-S 检验</th>
<th>HCs</th>
<th>PNEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>24.17</td>
<td>45.66</td>
<td>0.589 9</td>
<td>6.82×10⁻⁶ (1.6×10⁻⁹~7.96×10⁻⁵)</td>
<td>1.36×10⁻⁶</td>
</tr>
</tbody>
</table>

①Hcs的估计值范围。

2.3 KET 的生态风险评估

尽管 KET 对生物的急性毒性相对较小，目前环境水体中的暴露水平不会导致水生生物的快速死亡。然而，水环境中的生物长期接触可能会引起除生态效应以外的毒性效应，如孵化率降低、心率变化或身体畸形，进而影响水生生态系统的健康和种群结构。

现基于我国目前报道的地表水环境 KET 的暴露水平与慢性毒性数据推导 PNEC 值，采用风险商法对我国地表水中平均值的 KET 进行生态风险排序。图 1 所示。

图 1 KET 在我国流域的风险分布特征

由图 1 可知，我国各流域 KET 基于慢性毒性风险商值为 0.03 ~ 36.76，其中较高的 3 个流域为台湾淡水河、台湾金梅河和广东珠江，RQ 均 >10，具有较高的生态风险。南方湖泊、长江及北
模型在生态风险评估过程中能够产生不确定性，例如对数正态分布 (log-normal)、逻辑斯蒂（logistic）等。因此，由于数据的随机性、评估过程和数据分析模型的选择所产生的误差，导致风险评估结果具有一定的不确定性。

3 结论

对目前已有文献检索分析，我国流域中 KET 的检出率为 20% ~ 100%，范围为 ND ~ 420 ng/L，结合现有研究中慢性毒性数据对我国流域中 KET 进行生态风险评估，对我国流域中水生生物有一定风险。基于繁殖、发育等不同测试指标的慢性毒性数据表明水生生物的发育和繁殖指标对 KET 更加敏感。从不同空间角度分析，我国南方水体中 KET 的检出率和浓度水平均高于北方水体。台湾淡水河中 KET 的风险值最高 (RQ = 36.76)，对水生生物存在高风险；南方湖泊 (RQ = 1.10)、长江 (RQ = 1.89) 及北京市河流 (RQ = 3.31 ~ 4.19) 中 KET 对水生生物具有中等风险；而 KET 对北方大部分流域 (0.1 ≤ RQ < 1) 中水生物的慢性毒性影响较小，具有潜在的生态风险，长期暴露可能会水生生物造成伤害，需要关注。

[参考文献]

[20] FELIX L M, ANTUNES I M, COIMBRA A M. Ketamine NMDA receptor - independent toxicity during zebrafish (Danio re-

2014, 41: 27–34.

