引用本文:张翠芝,安海岗.基于复杂网络及其模体的京津冀及周边城市空气污染空间关联与城市协同治理[J].环境监控与预警,2023,15(4):30-37
ZHANG Cuizhi,AN Haigang.Spatial Correlation and Urban Collaborative Governance of Air Pollution in Beijing Tianjin Hebei and Nearby Cities Based on Complex Network and Its Motif[J].Environmental Monitoring and Forewarning,2023,15(4):30-37
【打印本页】   【HTML】   【下载PDF全文】   查看/发表评论  【EndNote】   【RefMan】   【BibTex】
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 4672次   下载 727 本文二维码信息
码上扫一扫!
分享到: 微信 更多
基于复杂网络及其模体的京津冀及周边城市空气污染空间关联与城市协同治理
张翠芝1,2,安海岗1*
1.河北地质大学,河北 石家庄 050031;2.河北东方学院,河北 廊坊 065000
摘要:
为了探究京津冀及周边31个城市空气污染的空间关联与季节演化情况,于2015年1月1日至2021年12月31日选取该区域的空气质量指数(AQI)日均值作为样本,首先对31个城市AQI的时间变化特征和空间分布特征进行了分析;然后计算不同城市AQI的皮尔逊相关系数,结合引力模型,构建了该区域空气污染空间关联网络;最后对网络的整体特征与季节演化情况进行了分析。结果表明,该区域空气污染空间关联网络密度较高,关联比较紧密,度值与中心性较高的城市对空气污染有更高的传输贡献,石家庄、邢台及邯郸的中心性最高,对其他城市空气污染传输的控制能力最强;网络共分为3个凝集子群,石家庄、邢台及邯郸位于子群发生关联的中心位置;对4个季节空间关联网络图进行对比分析,春季网络密度更高,不同城市之间AQI的关联更为紧密;在模体A的四季关联网络中,石家庄、邢台和邯郸为主要传播城市;在模体B的四季关联网络中,邯郸和北京为枢纽城市,这些城市在空气污染的传播过程中起着重要作用。提出,加强石家庄、邢台、邯郸、北京这4个城市与其他城市空气污染协同治理力度,完善监督管理机制,促进环保产业发展;从行政、法律、经济等多方面入手,为解决京津冀大气污染问题提供充分保障;结合京津冀地区的季节气候条件,加强冬季煤改电、煤改气等管理力度,实行区域或集中采暖供热,减少燃料消耗和烟尘排放。
关键词:  复杂网络  模体  京津冀  空气污染  空间关联  城市协同治理
DOI:10.3969/j.issn.1674-6732.2023.04.005
分类号:X511;X823
基金项目:河北省高等学校人文社会科学研究项目(SD191006);河北省省级科技计划软科学研究专项(22557652D)
Spatial Correlation and Urban Collaborative Governance of Air Pollution in Beijing Tianjin Hebei and Nearby Cities Based on Complex Network and Its Motif
ZHANG Cuizhi1,2,AN Haigang1*'
1.Hebei University of Geosciences, Shijiazhuang, Hebei 050031,China; 2.Hebei Oriental University, Langfang, Hebei 065000, China
Abstract:
In order to explore the spatial correlation and seasonal evolution of air pollution in Beijing Tianjin Hebei and its nearby cities, the daily average AQI of Beijing Tianjin Hebei region and its nearby 31 cities from January 1, 2015 to December 31, 2021 was taken as a sample. Firstly, the regional air quality distribution characteristics are analyzed from the perspective of the temporal and spatial distribution characteristics of the AQI index of 31 cities; Then, the Pearson correlation coefficient of AQI in different cities is calculated, and the spatial correlation network of air pollution in this region is constructed based on the gravity model; Finally, the overall characteristics and seasonal evolution of the network are analyzed. The results show that the spatial correlation network density of air pollution in this region is higher and the correlation is closer. The cities with higher degree and centrality have higher transmission contribution to air pollution. Shijiazhuang, Xingtai and Handan have the highest centrality and the strongest control ability to other cities on air pollution transmission. The network was divided into three agglutination subgroups, Shijiazhuang, Xingtai and Handan were located in the center of the correlation of subgroups. A comparative analysis of the spatial correlation network maps of the four seasons shows that the network density is higher in spring, and the correlation between different cities is closer. In the four season correlation network of model A, Shijiazhuang, Xingtai and Handan are the main transmission cities. In the four season correlation network of model B, Handan and Beijing are the hub cities, which play an important role in the transmission process of air pollution. It is suggested that we strengthen the coordination of air pollution control in Shijiazhuang, Xingtai, Handan and Beijing with other cities, improve the supervision and management mechanism, promote the development of environmental protection industry, solve the Beijing Tianjin Hebei region air pollution problem from administrative, legal, economic and other aspects so as to provide long term guarantee, strengthen the management of coal to electricity and coal to gas in winter by combining with the seasonal climate conditions in the Beijing Tianjin Hebei region, and implement regional or centralized heating to reduce fuel consumption and soot emissions.
Key words:  Complex network  Motif  Beijing Tianjin Hebei  Air pollution  Spatial correlation  Urban collaborative governance